

Pacioli: a PROLOG system for financial report validation
Miguel Calejo (mc@logicalcontracts.com), Charles Hoffman (Charles.Hoffman@me.com)

https://auditchain.finance

1 Introduction
Financial information is reported by public companies to regulators worldwide using a standard rich structured data
format, the “Extensible Business Reporting Language”, or XBRL1. An XBRL report typically comprises two pieces:

• A single XML (or alternatively “inline XBRL”, iXBRL2) file with instance data – financial facts contextualized with
dates and hypercube dimensions – which depends on:

• Background ontological information, in the form of a “Discoverable Taxonomy Set” – potentially dozens of files
with data element schema and hypercube definitions, hierarchical presentation directives, assertions - a tree graph of
XML schema and linkbase resources published on the web.

Pacioli3 provides:

• Loading of XBRL reports and their Discoverable Taxonomy Sets into a self-contained Prolog model.
• Prolog-based XBRL formula processor, adding auditing and explanation capabilities.
• Combination of a report model with user alterations of formulas and facts, as well as additional linkbases.
• Fact mapping and derivation, for “ontology mapping” all reports into the same comparable representation
• Detection of higher-level “blocks” of information, beyond XBRL, such as roll ups, roll forwards, adjustments,

disclosures, etc.
• Processing of XBRL and extra-XBRL rules for report validation, including disclosure mechanics and checklists,

model structure, and “Fundamental Accounting Concepts” rules; this is described by the Seattle Method4 of
processing XBRL-based financial reports;

• All rule outcomes are persisted to the Pacioli model on IPFS5, anchored to a Merkle-like cryptographic hash of all
the above ingredients, thus ensuring immutability and reproducibility for posterity

• Multiple report rendering interfaces

So for example, given Apple’s 10K for 2021 inline XBRL filing6, Pacioli produces an analysis7; one information block
of which is shown in the pivot table below:

1 https://www.xbrl.org/introduction/
2 https://www.xbrl.org/the-standard/what/ixbrl/
3 https://docs.auditchain.finance/auditchain-protocol/pacioli-logic-and-rules-engine
4 Charles Hoffman, CPA, Seattle Method, http://xbrlsite.com/seattlemethod/SeattleMethod.pdf
5 https://ipfs.io , the “InterPlanetary File System”, a decentralized, redundant, robust file storage service
6 https://www.sec.gov/Archives/edgar/data/320193/000032019321000105/aapl-20210925.htm
7 https://auditchain.infura-ipfs.io/ipfs/QmSuMTNG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/

If you follow the link in the previous footnote and navigate to MAIN PAGE / Derivations Graph, you can see how the
facts above were derived from the filed data.

PROLOG lovers can add a suffix to the URL of any Pacioli report and obtain its PacioliModel8, in this case 36k PROLOG
facts for the Apple report and analysis. Searching in there for the fac:’Revenue’ fact in the pivot table above, you’ll find
that it was not filed, but actually mapped from an us-gaap9 concept that was reported:
mappedFact(…,
 fac:'Revenues',
 'i55e5364a9af5491886caee077afe8d44_D20200927-20210925',
 usd,
 null,-6,
 365817000000,
 'http://accounting.auditchain.finance/2022/fac/Rules_Mapping/COMID-BSC-CF1-ISM-IEMIB-OILY-SPEC6_mapping-definition.xml'
+
 ('us-gaap':'RevenueFromContractWithCustomerExcludingAssessedTax') +
 reported
).

For more examples, see the Pacioli batch report10 for recent Dow Jones top 30 company filings.

2 System Architecture
Pacioli has been available since early 2021 as a web application at http://pacioli.auditchain.finance to support debugging,
rule development and training. Select users (developers, accountants) interact with SWISH11 notebooks12: they submit
financial report URLs and obtain report validation analyses from Pacioli, as self-contained HTML mini sites generated
by SWI-Prolog’s termerised HTML13, using Javascript frameworks14 for browser client-side data rendering. The report
analysis output includes machine-readable (Prolog and JSON) files, all stored on IPFS:

8 For the above example, https://auditchain.infura-
ipfs.io/ipfs/QmSuMTNG1W98U3xTsJRX2cs1LxKQqGKqM9iq2w1HhsaCZB/ReportAndModel.pl.gzip
9 https://www.cfainstitute.org/en/advocacy/issues/gaap#sort=%40pubbrowsedate%20descending
10 https://auditchain.infura-ipfs.io/ipfs/QmaATb3njmXgbbZVuUPuJweukyHNk2WbxGVJCSEUgqRt3o/
11 https://github.com/SWI-Prolog/swish
12 For exemple https://pacioli.auditchain.finance/tools/PowerUserTool.swinb
13 https://github.com/Anniepoo/swiplwebtut/blob/master/web.adoc#html1-and-termerized-html
14 Namely https://pivottable.js.org/examples/ and http://tabulator.info, in addition to SWISH-generated Graphviz graphs

But its main use case is embedded in “Pacioli nodes”, constituting the decentralized Auditchain validator network:

Pacioli coordination is performed by an Auditchain nodejs agent, and most users interface via Auditchain’s Web3 app.
Financial report rules will be (in 2023) wrapped as Non Fungible Tokens. The AUDT token acts as currency for user fees,
network operation rewards and the future rule NFTs marketplace.

Since late 2021 this network went through alpha and beta programs with a dozen validators across the planet, with
(Polygon) mainnet deployment imminent.

3 Some PROLOG implementation aspects
Since April 2020, Pacioli development indulged us on a gourmet feast of PROLOG programming15:

• XBRL to PROLOG conversion is a perfect fit for SWI-Prolog’s XML parser, with XBRL standard definitions
mapping to PROLOG clauses handling the XBRL DOM representation.

• Excel to PROLOG conversion in order to load information into Pacioli which is then converted to XBRL.
• To save development time, detailed XBRL conformance tests are delegated to a reference XBRL (pre)processor16,

launched as a PROLOG subprocess.
• Powerful ad-hoc querying over the Pacioli model with PROLOG17
• XBRL formula evaluation, including variable binding, is done by the straight execution of a Prolog goal generated

from the formula; XBRL search over report facts and multidimensional contexts in a XML document maps straight
into PROLOG backtracking over their relational representation, with expressions evaluated by a simple PROLOG
interpreter

• Simplified syntax for XBRL formulae resorting to Prolog operators, as opposed to the original XML linkbase
• Block detection via declarative clauses
• Report rendering: “termerised HTML”18 galore; external Javascript frameworks are configured and embedded via

DCG-based HTML generation

15 As we write this the open sourcing of Pacioli is still under discussion, hence no code URL yet
16 https://github.com/Arelle/Arelle, also used to extract XBRL from iXBRL
17 Simulating the XULE expression language in PROLOG: https://pacioli.auditchain.finance/example/XULE.swinb
18 https://github.com/Anniepoo/swiplwebtut/blob/master/web.adoc#html1-and-termerized-html

4 Significance – present and future
PROLOG application projects usually contain a heavy component of research: new language implementation techniques,
new system tools, or even theoretical advances. On the contrary, projects built with mature, mainstream languages focus
on application rather than infra structure development.

Pacioli is probably one of the first PROLOG projects focusing on application development driven from business
requirements, as reflected in the core team: a senior professional PROLOG developer and a domain guru – no (present…)
academics onboardJ This would be impossible without the underlying maturity of SWI-Prolog and its libraries.

Up to now a dozen Pacioli instances, operated by different entities around the world, have already validated thousands of
financial reports in different jurisdictions. As Auditchain deploys to mainnet (production) these numbers will increase
drastically, propelled by a global need from small and medium investors to scrutiny public companies outside the walled
gardens of the big accounting firms; building up a trustable decentralized repository of financial report analysis, with
PROLOG validators behind it, attesting confidence in the trillions of dollars of reported finances all over the planet –
documented in thousands of actionable PROLOG models, amenable to later cross-querying etc.

Arguably, one of the most significant PROLOG applications to date, both in scale and global social impact.

5 References
Please see footnotes

Acknowledgements to Jason Meyers and the Auditchain early investors, for betting Auditchain on Pacioli; to Jacinto
Dávila for help with Pacioli and for his Auditchain Explorer UI; to Bogdan Fiedur for the blockchain agent and Auditchain
smartcontracts; to Christopher Jastrzebski for all the support, and his Auditchain Web3 UI; to Fuad Begic for the
complementary Luca report editor under development; to Andrew Noble and Dudley Gould for encouragement and
suggestions.

To Jan Wielemaker and associates, for a software stack that finally made PROLOG feasible for business applications.

And finally, to Bob Kowalski: for his vision half century ago, and all the personal support in recent years.

